A distributed approach for large-scale classifier training and image classification
نویسندگان
چکیده
In this paper, a distributed approach is developed for achieving large-scale classifier training and image classification. First, a visual concept network is constructed for determining the inter-related learning tasks automatically, e.g., the inter-related classifiers for the visually similar object classes in the same group should be trained in parallel by using multiple machines to enhance their discrimination power. Second, an MPI-based distributed computing approach is constructed by using a master–slave mode to address two critical issues of huge computational cost and huge storage/memory cost for large-scale classifier training and image classification. In addition, an indexing-based storage method is developed for reducing the sizes of intermediate SVM models and avoiding the repeated computations of SVs (support vectors) in the test stage for image classification. Our experiments have also provided very positive results on 2010 ImageNet database for Large Scale Visual Recognition Challenge. & 2014 Elsevier B.V. All rights reserved.
منابع مشابه
Sample-oriented Domain Adaptation for Image Classification
Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it. The conventional image processing algorithms cannot perform well in scenarios where the training images (source domain) that are used to learn the model have a different distribution with test images (target domain). Also, many real world applicat...
متن کاملLearning Document Image Features With SqueezeNet Convolutional Neural Network
The classification of various document images is considered an important step towards building a modern digital library or office automation system. Convolutional Neural Network (CNN) classifiers trained with backpropagation are considered to be the current state of the art model for this task. However, there are two major drawbacks for these classifiers: the huge computational power demand for...
متن کاملIntelligent and Robust Genetic Algorithm Based Classifier
The concepts of robust classification and intelligently controlling the search process of genetic algorithm (GA) are introduced and integrated with a conventional genetic classifier for development of a new version of it, which is called Intelligent and Robust GA-classifier (IRGA-classifier). It can efficiently approximate the decision hyperplanes in the feature space. It is shown experime...
متن کاملUsing Fuzzy LR Numbers in Bayesian Text Classifier for Classifying Persian Text Documents
Text Classification is an important research field in information retrieval and text mining. The main task in text classification is to assign text documents in predefined categories based on documents’ contents and labeled-training samples. Since word detection is a difficult and time consuming task in Persian language, Bayesian text classifier is an appropriate approach to deal with different...
متن کاملUsing Fuzzy LR Numbers in Bayesian Text Classifier for Classifying Persian Text Documents
Text Classification is an important research field in information retrieval and text mining. The main task in text classification is to assign text documents in predefined categories based on documents’ contents and labeled-training samples. Since word detection is a difficult and time consuming task in Persian language, Bayesian text classifier is an appropriate approach to deal with different...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neurocomputing
دوره 144 شماره
صفحات -
تاریخ انتشار 2014